Integration of Waste Heat to Decarbonize District Energy

Majid Bahrami, PhD, P. Eng. FASME, FCAE

Canada Research Chair in Alternative Energy Conversion Systems

Professor, Mechatronics Systems Engineering, Simon Fraser University,

British Columbia, Canada

Sorption Friends III May 2023

Simon Fraser University

Burnaby campus

Surrey campus

Laboratory for Alternative Energy Conversion

- Transport phenomena in PEM fuel cells
- Electronic cooling solutions

- Sorption A/C, dehumidification, thermal energy storage
- District energy network modelling
- Energy and water management in greenhouses
- Graphite heat exchangers and heat recovery

How can we decarbonize energy grids?

Can "electrification" alone solve our climate/energy crises?

What are the key challenges facing integration of <u>distributed</u> <u>energy resources</u> in energy grids?

What are the transformative (often overlooked) technologies needed to overcome these challenges?

What is the role of <u>waste-heat</u> and <u>thermal storage</u> in meeting climate change targets?

Climate targets in cities

Cities ^[3]	Climate targets
Vancouver	Achieve 100% of energy needs from renewables sources by 2050
Copenhagen	100% renewable by 2050 (currently 35%)
Frankfurt	100% renewable by 2050

[1] City of Vancouver, Climate Emergency Action Plan Summary 2020-2025.

[2] City of Vancouver, Greenest City 2020 Action Plan Action.

[3] City of Surrey, Low Carbon Strategy, 2021.

What went wrong in Vancouver?

SFU

Stockholm, Sweden

Vancouver, BC

	Population	
2007	2020	
602,000	697,000	+14%

A mature (10 year old) tree absorbs almost 22 kg per year.

Integration, storage, and control of <u>distributed renewable energy sources</u> to meet energy demands and grid resiliency, while reducing emissions and creating sustainable jobs in communities.

City of Burnaby Waste-to-Energy Facility handles about 260,000 tonnes of garbage per year (a quarter of the region's garbage). The mass-burn facility generates enough electricity to power 16,000 homes. <u>The waste-heat is currently unused</u>.

Capillary assisted lowpressure evaporator Composite sorbent infused with expanded natural graphite

Objective and scope:

Biomimetic water-repellent surfaces, e.g., the lotus leaf inspired a new generation of superhydrophobic structures.

mm-sized surface structure (slippery asymmetric bumps): <u>2–10</u> <u>times higher heat transfer</u>

Condensation on Flat vs "Bumpy" Surfaces

100 x Play

Sample video

(Flat vs. featured surface) Surface temperature: 0 °C Ambient temperature: 23 °C Relative Humidity: 70 %

Modeling Dropwise Condensation

Contact angle measurement

Correlation for Dropwise Condensation

Nature-Inspired Capillary-Assisted Evaporation

Inspiration: Plants use capillary action to draw water from the ground

SFU

Douglas-fir trees (100 m) Uses capillary pumping

14

SFU Micro Capillary-Assisted Low-Pressure Evaporator

Thermal spray porous copper coating on finned tube heat exchanger

Direct metal sintering of finned aluminum microtube heat exchanger

	<u>Cooling Power</u>
Porous copper evaporator:	0.3 kW/kg
Sintered aluminum evaporator:	1.2 kW/kg

Vortex Generators

SFU

Critical flow velocity: Velocity at which transition to fluttering mode occurs

Increasing flow velocity

Li, Zheng, et al. "Bio-inspired self-agitator for convective heat transfer enhancement." *Applied Physics Letters* (2018)

K. Li, et al. "A novel caudal-fin-inspired hourglass-shaped self-agitator for air-side heat transfer enhancement in plate-fin heat exchanger," Energy Convers. Manag. (2019)

Flap Orientation: Reducing Critical Flow Velocity

